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Antimicrobial drug resistance is a global health problem that continues to expand as micro-
organisms adapt to the antibiotics we use to treat them and as new classes of antimicrobial 
agents have been harder to discover and advance into the clinic. The second edition of 
Antimicrobial Drug Resistance grew out of a desire by the editors and authors to provide an 
updated, comprehensive resource of information on antimicrobial drug resistance that would 
encompass the current information available for bacteria, fungi, protozoa, and viruses. The two 
volumes have been extensively revised with many new authors and chapters as the field of drug 
resistance has evolved. We believe that this information will be of value to clinicians, epidemi-
ologists, microbiologists, virologists, parasitologists, public health authorities, medical stu-
dents, and fellows in training. We have endeavored to provide this information in a style that is 
accessible to the broad community of persons who are concerned with the impact of drug 
resistance in our clinics and across broader global communities.

Antimicrobial Drug Resistance is divided into two volumes. Volume 1 has sections covering 
a general overview of drug resistance and mechanisms of drug resistance, first for classes of 
drugs and then by individual antimicrobial agents, including those targeting bacteria, fungi, 
protozoa, and viruses. Volume 2 addresses clinical, epidemiologic, and public health aspects 
of drug resistance, along with an overview of the conduct and interpretation of specific drug 
resistance assays. Together, these two volumes offer a comprehensive source of information on 
drug resistance issues by the experts in each topic.

We are very grateful to the 197 international experts who have contributed to this textbook 
for their patience and support as the work came together. The editors would like to especially 
thank Michelle Feng He for her exceptional support and encouragement to the editors in bring-
ing this revised textbook to print. Finally, the book would never have been completed without 
the patience and support of our wives and families.

Cambridge, MA, USA Douglas L. Mayers, M.D. 
Detroit, MI, USA Jack D. Sobel, M.D. 
Québec, Canada Marc Ouellette, M.D. 
Ann Arbor, MI, USA Keith S. Kaye, M.D., M.P.H. 
Tel Aviv, Israel Dror Marchaim, M.D.
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1  Introduction

Instead of eliminating infectious diseases, as some had pre-
dicted, antibiotic use has inevitably led to the emergence of 
more antibiotic-resistant pathogens. This chapter reviews the 
history of our understanding of the processes by which resis-
tance arises. Knowledge of the chemistry and genetics of this 
phenomenon has allowed the development of improved anti-
biotics and has made major contributions to molecular biol-
ogy and the biotechnical revolution.

Resistance to antimicrobial agents has been recognized 
since the dawn of the antibiotic era. Paul Ehrlich, the father 
of modern chemotherapy, observed that during treatment of 
trypanosome infections organisms sometimes emerged that 
were resistant to the agent being used. Resistance was spe-
cific in the sense that a fuchsin dye-resistant strain was still 
susceptible to an arsenic compound while a strain resistant to 
the arsenic compound retained sensitivity to the dye. He 
showed that resistance, once acquired, was stably inherited 
and in 1908 proposed that resistance was due to “reduced 
avidity of the chemoreceptors so that they are no longer able 
to take up” drug [1]. Substitute “target” for “chemoreceptor” 
and one of the major mechanisms for antimicrobial resis-
tance was revealed as was its specificity for particular com-
pounds. Drug inactivation was discovered early as well. In 
1919, Neuschlosz reported that Paramecium caudatum resis-
tant to quinine and to certain dyes acquired the ability to 
destroy the toxic agents [2].

Early on resistance was categorized as either natural or 
acquired. For example, natural resistance to gentian violet 
was a property of gram-negative as compared to gram- 
positive organisms. Some agents (sulfonamides, aminogly-
cosides, chloramphenicol, rifampin, and others) were 
recognized to have a broad spectrum while other agents had 

a narrower focus (vancomycin, macrolides, isoniazid). The 
less susceptible organisms were said to be naturally resistant. 
The natural resistance of gram-negative bacteria to dyes and 
many other agents was attributed to an outer membrane bar-
rier, which with our now increased appreciation of efflux 
pumps is understood to be only part of the story [3]. Acquired 
resistance properly involved reduced susceptibility of an 
organism that was previously more sensitive to the drug, and 
was to be distinguished, if possible, from replacement of a 
susceptible organism by more resistant but unrelated ones, a 
process soon appreciated to occur all too readily in hospitals, 
which became breading grounds for increasingly resistant 
flora.

How to interpret the emergence of resistance revived a 
nineteenth century controversy between Nägeli and Koch. 
Nägeli held that microorganisms were polymorphic and 
could transform spontaneously in shape and biochemical 
behavior. Koch believed that they were monomorphic with 
fixed properties and hence classifiable into species that 
could be rigidly defined. In the 1920s and 1930s this debate 
took the form of belief in the influence of bacterial life 
cycles. The theory of microbial dissociation held that such 
properties as shape, nutritional requirements, antigenicity, 
virulence, chemical reactivity, and hence susceptibility 
were not fixed properties of an organism but varied with the 
growth phase and life cycle of the bacterial culture [4]. By 
this line of reasoning the appearance of antibiotic resis-
tance was but another manifestation of dissociation.

In today’s terms the issue was adaptation versus mutation. 
Did acquired resistance represent an adaptive response to the 
drug, which persisted for many generation after the drug was 
removed, or selection from the initial population of rare pre-
existing resistant mutants? The adaptation hypothesis was 
championed in the 1940s by Hinshelwood who argued that if 
a culture was grown in the presence of an inhibitor, the con-
centration of the substrate for the blocked reaction would 
accumulate and reverse the inhibition. Serial culturing in 
successively higher concentrations of drug was interpreted 
as thus “training” the culture to tolerate the inhibition [5]. 
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The issue was settled in favor of mutation by demonstration 
that resistance could emerge in the absence of antibiotic and 
by its transfer with DNA. For example, the Lederbergs 
showed by replica plating that streptomycin-resistant colo-
nies of Escherichia coli were present in a culture never 
exposed to the drug [6], while Hotchkiss demonstrated that 
penicillin resistance could be transferred to a susceptible 
pneumococcus by DNA from a resistant one [7].

Adaptation returned later, however, in the form of adap-
tive mutations and adaptive antibiotic resistance. Adaptive 
mutations are defined as mutations formed in response to the 
environment in which they have been selected [8, 9]. Such 
mutants occur in nondividing or slowly dividing cells and are 
specific for events that allow growth in that environment, as, 
for example, the emergence of ciprofloxacin-resistant 
mutants in nondividing cultures of E. coli exposed for a week 
to ciprofloxacin in agar [10]. Adaptive resistance is a phe-
nomenon seen with aminoglycosides when bacteria pre- 
exposed to the antibiotic show less killing on subsequent 
exposure [11]. A reappreciation of genomic plasticity 
returned as well as the many mechanisms of horizontal gene 
transfer were elucidated and again challenged the notion of 
fixed bacterial species.

Until penicillin became available sulfonamides were 
widely used for both treatment and prophylaxis, and before 
long resistance began to appear in several pathogens. Daily 
administration of sulfadiazine to prevent upper respiratory 
infections at military bases during World War II was fol-
lowed by the emergence of resistant β-hemolytic strepto-
cocci. The question was whether the resistance was acquired 
or preexisting. Since the resistant organisms mainly belonged 
to only a few serotypes, selection of naturally resistant strains 
was favored although the possibility that only particular 
serotypes could readily acquire resistance seems not to have 
been considered [12, 13]. Use of sulfonamides for treatment 
of gonorrhea was followed by increasing failure rates and the 
proliferation of sulfonamide-resistant strains of Neisseria 
gonorrhoeae [14]. Increasing sulfonamide resistance was 
also noted in Neisseria meningitidis with corresponding clin-
ical failure [15]. Whether the neisseria truly acquired resis-
tance was unclear since sulfonamide-resistant strains were 
discovered in cultures of N. gonorrhoeae or N. meningitidis 
from the presulfonamide era [15, 16]. Sulfonamide treatment 
of bacillary dysentery became complicated as well by the 
isolation of resistant strains, especially of resistant Shigella 
sonnei [17]. Isolated instances were also reported of sulfa-
diazine resistance in pneumococci recovered after therapy of 
either pneumococcal pneumonia [18] or pneumococcal men-
ingitis [19]. Knowledge of bacterial biochemistry and metab-
olism had advanced after the empirical discovery of 
sulfonamides so that in 1940 p-aminobenzoic acid (PABA) 
was discovered to block the action of sulfonamide. PABA 
was proposed to be an essential metabolite for bacteria. 

Sulfonamide was hypothesized to mimic the chemical 
structure of PABA and to impede bacterial growth by com-
peting with PABA to prevent its utilization [20]. Extracts of 
resistant pneumococci were soon found to contain increased 
amounts of a sulfonamide inhibitor [21], which was identi-
fied as PABA in extracts of other sulfonamide-resistant bac-
teria [22], so all seemed consistent with resistance as the 
result of PABA overproduction. The story took another twist, 
however, when sulfonamide-resistant E. coli were found to 
make not excess PABA but a sulfonamide-resistant enzyme 
that utilizes PABA in an early step of folic acid biosynthesis 
[23]. Such target enzyme insensitivity is now thought to be 
the main, if not the sole, mechanism for sulfonamide resis-
tance [24].

The major mechanism for resistance to penicillin was 
much more quickly identified. The dramatic increase in 
penicillin resistance in Staphylococcus aureus that took 
place in the first decade of the antibiotic’s use resulted from 
the selective advantage provided by an enzyme that inacti-
vated penicillin, which was present initially in only a few 
isolates. The enzyme, penicillinase, was first described, not 
in S. aureus, but in E. coli, in 1940, the same year clinical 
studies with penicillin began [25]. By 1942 increased resis-
tance was reported in S. aureus from patients receiving 
penicillin [26], and in 1944 penicillinase was extracted 
from resistant strains of S. aureus obtained from patients 
who had not even been exposed to the drug [27]. At 
Hammersmith Hospital in London the fraction of S. aureus 
isolates that were penicillin resistant increased rapidly 
from 14 % in 1946, to 38 % in 1947, and to 59 % in 1948 
[28] eventually stabilizing at the 90 % resistance seen today 
and inspiring the development of semi-synthetic 
β-lactamase-resistant penicillins, which were the first anti-
biotics specifically designed to overcome a characterized 
resistance mechanism [29]. Unfortunately, methicillin- 
resistant S. aureus appeared within a few years and were 
found to make not a methicillin-degrading enzyme but 
rather a novel methicillin-resistant protein involved in cell 
wall biosynthesis [30, 31]. The battle between bacteria and 
pharmaceutical chemists synthesizing improved β-lactam 
antibiotics had been joined and would continue [32].

The basis of resistance to streptomycin remained a puzzle 
for a long time. Streptomycin-resistant mutations arose at 
low frequency in many kinds of bacteria, including, unfortu-
nately, Mycobacterium tuberculosis when the agent was used 
alone for treatment. Mutation produced not only high-level 
resistance but also bacteria dependent on streptomycin for 
growth, a curious type that could even be recovered from 
patients treated with the drug [33]. A variety of biochemical 
changes followed exposure to streptomycin, including dam-
age to the cell membrane [34], but it was the observation that 
growth of a streptomycin-dependent mutant of E. coli in a 
suboptimal concentration of streptomycin resulted in 
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decreased concentrations of protein and increased amounts 
of RNA that led Spotts and Stanier to propose that strepto-
mycin blocked protein synthesis in susceptible cells but was 
required for proper mRNA attachment to the ribosome in 
dependent ones [35]. Direct demonstration that streptomycin 
impaired amino acid incorporation in a cell-free system soon 
followed [36]. Streptomycin at a concentration as low as 
l0−6 M could inhibit polyuridylate directed incorporation of 
phenylalanine, but a 1000-fold higher concentration was 
required if the cell-free system was derived from a 
streptomycin- resistant organism. Furthermore, streptomycin 
was found to cause misreading of the genetic code so that in 
its presence polyuridylate catalyzed the misincorporation of 
isoleucine and other amino acids [37]. So much was learned 
in studying the interaction of streptomycin and other drugs 
with the bacterial ribosome [38] that it came as something of 
a surprise that clinical isolates resistant to streptomycin 
relied on quite a different strategy, namely modification by 
adenylation, phosphorylation, and, for other aminoglyco-
sides, acetylation as well [39]. The lesson that resistance 
selected in the laboratory could be different from that 
selected in the clinic had to be learned.

Resistance to other antimicrobial agents emerged and was 
studied, but the next major conceptual advance was the 
appreciation of the importance of R-plasmids, which led not 
only to a better understanding of resistance acquisition and 
dissemination but ultimately to recombinant DNA and the 
biotechnology revolution. The demonstration of transferable 
resistance in Japan dated from 1959 but took several more 
years to attract attention and be accepted [40, 41]. An explo-
sion of discoveries followed. R-plasmids were found around 
the world not only in Enterobacteriaceae but also in pseudo-
monas, acinetobacter, staphylococci, enterococci, bacteroi-
des, clostridia, and in virtually every bacterial species 
examined. Some had remarkably wide host ranges while oth-
ers were limited to gram-positive, gram-negative, anaerobic, 
or even smaller bacterial subsets. Techniques were devel-
oped for plasmid transfer, isolation, and classification [42, 
43]. Transposons that allowed resistance genes to jump from 
one DNA site to another were discovered [44], as were inte-
grons that allowed resistance gene cassettes to be captured 
on plasmids and efficiently expressed [45], and specialized 
insertion sequences adept at gene capture [46]. Restriction 
enzymes, often plasmid-mediated, facilitated analysis of 
plasmid structure and permitted DNA cloning. The genetics 
of antibiotic resistance became as tractable as its biochemis-
try and contributed much to the emerging discipline of 
molecular biology.

The finding that a β-lactamase (designated TEM) from a 
clinical isolate of E. coli was carried on an R-plasmid [47] 
led to the realization that this resistance mechanism could 
spread not only to other E. coli but also to other genera. 
Before long TEM β-lactamase was found in ampicillin- 

resistant Haemophilus influenzae [48] and in penicillin- 
resistant N. gonorrhoeae [49]. Enzymes more active on 
cephalosporins than penicillins were discovered, functional 
classification of the growing body of β-lactamases began 
[50], the technique of isoelectric focusing was added to the 
repertoire of β-lactamase biochemists [51], introduction of 
cefamandole led to the recognition that β-lactamase dere-
pression could provide resistance in some organisms [52], 
and clinical use of expanded-spectrum cephalosporins was 
followed by an explosion of extended-spectrum and other 
β-lactamases [32, 53].

Plasmids carry genes for resistance to many other antimi-
crobial agents. Some genes code for enzymes that modify or 
inactivate the agents, others for enzymes that alter drug tar-
gets in the cell or provide alternate biosynthetic pathways. 
Genes for antibiotic efflux (chloramphenicol, tetracycline) 
were also found to be plasmid-determined, but efflux- 
mediated resistance occurred as well from chromosomal 
mutations that alter control circuits also involved in expres-
sion of outer membrane proteins that form porin channels for 
antibiotic uptake. Study of bacteria collected in the preanti-
biotic era indicated that the plasmids that organize, express, 
and transmit resistance predated the clinical use of antibiot-
ics [54]. R-plasmids resulted from the insertion of resistance 
genes into previously existing vehicles for their spread. The 
resistance genes themselves have had a diverse origin. Some 
have come from organisms producing antibiotics since these 
organisms needed a mechanism for self-protection [55, 56]. 
Others are now appreciated to have been present in environ-
mental organisms for millennia to counteract the biological 
weapons of competing antibiotic producers. Potential reser-
voirs of resistance genes have been found in ancient perma-
frost and at the bottom of caves sealed from above for 
millions of years [57, 58].

Plasmids are not the only vehicle for gene transfer. 
Naturally transformable pathogens such as Streptococcus 
pneumoniae, N. meningitidis, N. gonorrhoeae, and H. influ-
enzae were found to exchange chromosomal genes with 
members of closely related species, including genes for 
penicillin- binding proteins and topoisomerases that pro-
vide resistance to penicillin or quinolones [59–61]. 
Mutation plays an important role in resistance to some anti-
microbial agents usually by altering enzyme specificity or 
reducing binding to a lethal target. The notion that resis-
tance was based on infrequent mutational events also led to 
the concept that resistance could be prevented by simulta-
neous administration of two drugs since the product of the 
likelihood of resistance emerging to each would be greater 
than the size of any possible infecting inoculum, a thesis 
best justified by the success of multidrug treatment of 
tuberculosis. An increased mutation rate eventually exerts a 
fitness cost, but limited rate increases have been found in 
organisms with resistance attributable to an altered target 
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(quinolone resistance from gyrA mutations) [62] or modified 
enzyme  (expanded- spectrum β-lactam resistance due to 
extended-spectrum β-lactamases) [63].

Antibiotic resistance has come to be accepted as an inevi-
table consequence of antibiotic use. The ubiquity of the phe-
nomenon has been amply illustrated with emerging resistance 
to antiviral, antifungal, and anti-parasitic agents as well. On 
the positive side understanding the mechanisms of antibiotic 
resistance has often provided important insights into how 
antibiotics work. Knowledge about R-factors has unfortu-
nately not made a direct attack on the genetic basis of resis-
tance possible, but insight into resistance mechanisms has 
guided the development of expanded-spectrum β-lactams 
(cefepime, cefotaxime, ceftazidime, ceftriaxone, aztreonam, 
and others), aminoglycosides (amikacin, dibekacin, arbeka-
cin, plazomicin, and others), and tetracyclines (tigecycline) as 
well as currently available β-lactamase inhibitors (clavulanic 
acid, sulbactam, and tazobactam) and others undergoing eval-
uation (avibactam). A number of enigmas remain. Some 
organisms, such as S. aureus, Klebsiella pneumoniae, and 
Pseudomonas aeruginosa, seem particularly adept at acquir-
ing resistance while others are puzzlingly reluctant with cer-
tain drugs. Treponema pallidum and Streptococcus pyogenes, 
for example, remain fully susceptible to penicillin G despite 
decades of exposure to the drug while other organisms have 
become progressively more resistant. The tempo at which 
resistance develops is also remarkably variable (Table 1.1). 
Resistance may appear soon after a drug is introduced or only 
after many years. Methicillin-resistant S. aureus were isolated 
in the United Kingdom within a few years of the drug being 
introduced [64, 65], but 20 years elapsed before pneumococci 
with reduced susceptibility to penicillin were isolated and 
another 20 years before resistance was recognized as a world-
wide problem [66]. Vancomycin resistance took even longer 
to appear [67]. The equilibrium level at which resistance 

becomes stabilized is also curiously variable. β-Lactamase 
production has reached 10–30 % in the gonococcus, 15–35 % 
in H. influenzae, 30–40 % in E. coli, 75 % in Moraxella 
catarrhalis, and 90 % in S. aureus, but what determines these 
levels is poorly understood. Once it has been acquired, 
however, resistance is slow to decline [68] and there are 
few examples of reduced antibiotic use associated with 
diminished resistance [69] so that prevention of resistance 
by prudent antibiotic use remains the keystone to control. 
Appropriate use applies as well to nonhuman applications 
with restraining antibiotics in animal feed a prominent 
example.
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1  Introduction

It is widely upheld that evolution is the result of two essential 
forces: variability (chance) and selection (necessity). This 
assumption is confirmed by a number of simple phenomena in 
antibiotic resistance. Variability is created by random muta-
tion (also recombination), and some of these variants (for 
instance, those with a mutation in the antibiotic target) become 
resistant. These variants are selected by antibiotic use and 
consequently they increase the frequency of resistance. If we 
increase variability (as in a hyper-mutable strain) or the inten-
sity of selection (antibiotic hyper-consumption), the result is 
more resistance. This is true, but not the whole truth. Most 
determinants of antibiotic resistance are not based on simple 
mutations, but rather on sophisticated systems frequently 
involving several genes and sequences; moreover, resistance 
mutations are seldom transmitted by lateral gene transfer. The 
acquisition of any type of resistance produces a change. In 
biology, any change is not only an opportunity, but is also a 
risk for evolution. Bacterial organisms are highly integrated 
functional structures, exquisitely tuned by evolutionary forces 
to fit with their environments. Beyond the threshold of the nor-
mal compliance of these functions, changes are expected to 
disturb the equilibrium. Therefore, the acquisition of resis-
tance is not sufficient to survive; evolution should also shape 
and refine the way of managing resistance determinants. 
Under the perspective of systems biology, this biological 

dilemma is presented as “evolvability versus robustness”, 
where only robust systems (able to tolerate a wide range of 
external changes) survive, but in the long term they should 
reorganize their compositional network so that they can 
address new and unexpected external changes. In fact, we can 
expect a constant cycle between robustness and evolvability in 
antibiotic resistance, which is manifested by changes in the 
frequency of some particular resistant clones.

Indeed, the field of research in drug resistance is becoming 
more and more complex, and constitutes a growing disci-
pline. More than 40 years ago, Yves A. Chabbert (a brilliant 
pioneer in research about resistance) and one of us (F.B.) 
asked the pharmacologist John Kosmidis to coin the right 
Greek expression to describe “the science of studying resis-
tance”, and he immediately produced the word “antochol-
ogy” (from Avτoχυ, resistance). To our knowledge, it was not 
used before the publication of the first edition of this book in 
2009. In this chapter, we will examine the concept of resis-
tance genes, the effectors of antibiotic resistance, and two 
essential processes that shape microbial evolution of drug 
resistance. First, variability, the substrate of evolution, the 
process providing material in evolutionary processes. Second, 
selection, the mechanism of evolution [1], the process by 
which evolution is able to adapt genetic innovation to envi-
ronmental needs in the bacterial world. These evolutionary 
processes are embedded in a complex hierarchical network of 
interactions involving population dynamics of the biological 
elements involved in resistance, from particular genetic 
sequences, to genes, operons, mobile genetic elements, clonal 
variants, species, consortia of microorganisms, microbiotas, 
hosts and their communities, and the environment.

2  Resistance Genes, the Effectors 
of Antibiotic Resistance

Resistance genes are those that produce a protective or adap-
tive effect in a microorganism in response to the deleterious 
input following exposure to anthropogenic antimicrobial 
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agents. Note that implicitly this definition contains the con-
cept that, in a strict sense, antibiotic resistance is resistance to 
antibiotic therapy, that is, resistance as a threat for public health 
and consequently for the patient and for human population. It is 
true that there are differences in antibiotic susceptibility among 
different bacterial organisms, but certainly “bacteria were not 
born susceptible”; by reasons totally unrelated with antibiotic 
exposure, many bacterial organisms are unsusceptible or poorly 
susceptible to some antimicrobial agents. For instance, 
Escherichia coli is “resistant” to macrolides, only because the 
structure (lipopolysaccharides-based) and function (physiologi-
cal pumps, such as AcrAB) of the E. coli outer membrane do 
not allow these drugs to reach in sufficient quantity at the other-
wise “susceptible” ribosomal targets. Obviously the genes 
encoding for the outer membrane cannot be considered antibi-
otic “resistance genes”, and “resistance” can be considered here 
as a “false phenotype”. However, if genes involved in lipopoly-
saccharide or AcrAB pumps are functionally eliminated, E. coli 
become more susceptible to macrolides, but that does not make 
them “resistance genes”. In fact bacterial cells of all species 
contain a large number of genes (may reach 1 % of the genome) 
whose knock-out (or eventually mutations) or hyper-expression 
results in a decrease in susceptibility to antimicrobial agents. 
These genes constitute the “intrinsic resistome” for a given bac-
terial species [2]. The “natural resistance” or “intrinsic resis-
tance” of particular species to certain antibiotics depends on 
these genes, which are normally part of the bacterial chromo-
some “core” genome, involved in the physiological functions of 
the cell.

Metagenomic studies have identified many of these genes 
as “resistance genes”, and are inappropriately included as 
such in databases. As frequently new “resistance genes” are 
defined by homology with existing genes, the noise in data-
bases may increase exponentially. Most of the mistakes in 
such attribution are related with three groups of genes: (1) 
genes belonging to the intrinsic resistome, (2) genes encod-
ing antibiotic targets harbouring particular mutations, and 
(3) genes with insufficient degrees of genetic identity with 
resistance genes of clinical importance.

However, we cannot fully exclude that some of these 
genes could act as “true” resistance genes when they enter in 
another (susceptible) organism exposed to antibiotics. In 
their original host, these genes perform physiological func-
tions, and are generally inserted in a functional network. Out 
of the original host, decontextualized genes might be selected 
as true resistance genes. The first condition for this is that 
these genes could be captured by mobile genetic elements 
(MGEs). Second, the bacteria harbouring resistance genes in 
MGEs should have sufficient genetic and ecologic connec-
tivity with bacteria able to produce infections in humans. 
Third, that these genes encode for resistance to relevant anti-
biotics used in the therapy of infections, more so if these 
antibiotics were not known to be detoxified by other mecha-
nisms. Considering these main factors, the different resis-

tance genes that might be found in metagenomic resistomes 
can be classified into different levels of risk for health [3, 4].

3  Variability: The Substrate of Evolution 
of Drug Resistance

3.1  The Complexity of Antibiotic Action  
and the Variety of Resistance Phenotypes

The classic dominance of either mechanistic or clinical 
thought in microbiology has oversimplified the image of the 
possible harmful consequences of exposure to industrially 
produced antibiotics in the microbial world. From this point 
of view, antibiotics are considered as anti-biotics, anti-living 
compounds found or designed to either stop the growth or 
kill bacterial organisms. Their main molecular targets have 
been identified. Nevertheless, recent studies on sub- inhibitory 
effects of antibiotics demonstrate that the effects of antibi-
otic exposure in bacteria are much larger, and therefore the 
adaptive and evolutionary consequences of their action are 
also much more complex. First, at the cellular level, the 
effect of antibiotic exposure is not confined to the inhibition 
of a single lethal target and may cause secondary effects on 
bacterial metabolism. Second, at the population level, the 
effect of antibiotic exposure is not confined to the local 
extinction of a harmful bacterial organism. Antibiotics exert 
actions on the individual cells at concentrations far lower 
than those needed to inhibit growth or kill bacteria.

Recent studies of gene expression suggest that a number 
of cellular functions (some of them increasing fitness) are 
modified when bacteria are exposed to sub-inhibitory con-
centrations of antibiotics [5, 6]. Sub-inhibitory concentra-
tions of aminoglycoside antibiotics induce biofilm formation 
in Pseudomonas aeruginosa and E. coli. In P. aeruginosa, 
the aminoglycoside response regulator gene (arr) is essential 
for this induction and has contributed to biofilm-specific 
aminoglycoside resistance [7]. These results support the 
notion that antibiotics in nature are not only bacterial weap-
ons for fighting competitors, but they are also signalling mol-
ecules that may regulate the homeostasis of microbial 
communities. Competition, in microbial communities, is sel-
dom a permanent effect; competitors might just be suffi-
ciently aggressive to control the size of their populations, in 
order to avoid dominance of a single genotype. Diversity, 
rather than dominance of a particular group, is the hallmark 
of evolutionary success. Indeed the major aim of evolution is 
to survive, to persist in time; finally, the gain in space or in 
cell numbers only serves to assure persistence in time [8]. 
This view about an ecological role of antibiotics, serving as 
both weapons and signals (the classic armament-ornament 
duality) should immediately influence our view about the 
evolution of resistance traits [5]. If antibiotics act as weapons 
in nature, antibiotic resistance develops not only to prevent 
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suicide in the producer organisms, but also to protect the 
diversity of the coexisting microbial communities. If in natu-
ral environments the weapons are intended to be just sub-
lethal, just to modulate the growth rate or to alter the gene 
expression profile of microbes sharing the same habitat, 
resistance traits are modifiers or back-modulators of these 
effects. Indeed we should be open to consider that the emer-
gence and evolution of resistance not only applies for high- 
level, clinically relevant resistance, but also for resistance 
protecting the modulation of microbial interactions. If these 
interactions are important to maintain the bacterial lifestyle, 
resistance will develop even at very low “signalling” concen-
trations. In short, there are a multiplicity of effects of antibi-
otics in bacteria; consequently, there are many levels on 
which antibiotic resistance is exerted, from very specific to 
very general ones (Table 2.1).

3.1.1  Adaptation Without Change: Redundancy 
and Degeneracy of Bacterial Systems

Even though antibiotics might exert a number of effects on 
the bacterial cell even at low antibiotic concentrations, a 
number of cells within a population will be essentially unaf-
fected and could restore the original population (see also 
“phenotypic tolerance” in the next Sect. 3.1.2). At biological 
system level, this is an example of environmental canaliza-
tion defined as the property of a biological system to main-
tain the normal standard phenotype despite environmental 
perturbations. This robustness or inertia to perturbation 
depends in part on the redundancy and degeneracy of the 
biological system. Redundancy means that multiple identical 
units perform the same or very similar functions inside the 
system. For instance, by assuring high reproductive rates, 
which results in high cell densities, the negative effects of 
variation on the entire population is diluted. Indeed small 
populations have a high risk of extinction by deleterious 
variation. Interestingly, bacteria tend to increase their repli-
cation rate at concentrations of growth-inhibiting substances 
that are only slightly lower than those that prevent multipli-

cation, but the adaptive impact of this phenomenon has as yet 
been scarcely explored.

If a number of individuals are lost after a challenge, many 
other almost-identical individuals are available to replace 
them, thus repairing the system. Note that the reconstruction 
of the population depends on a relatively low number of indi-
viduals, and therefore the new population will be purged to 
some degree of its original genetic diversity (periodic selec-
tion). At higher complexity levels, degenerate individuals may 
also compensate for losses in units within a system. Degeneracy 
means that structurally different units can perform the same or 
very similar functions in the system. Probably clonal diversifi-
cation can be viewed as a way of increasing degeneracy within 
bacterial species. In short, redundancy and degeneracy tend to 
prevent antibiotic- mediated disordering events in high-level 
complexity bacterial systems, and lead to highly optimized 
tolerance. In the bacterial world, as redundant individuals are 
disposable they may be imported by other similar systems 
under danger of disorder. Hence, we can add connectivity—
the ability of elements and systems to interact—as a means for 
increasing such tolerance.

3.1.2  Phenotypic Tolerance
Non-inherited antibiotic resistance (non-susceptibility) illus-
trates the flexibility of bacterial populations to adapt to anti-
biotic challenges. As stated in the previous paragraph, fully 
susceptible bacteria from the genetic point of view (that is, 
lacking specific mechanisms of resistance) might exhibit 
phenotypic tolerance to antibiotics, that is, they are able to 
persist at concentrations in which the majority of the popula-
tion is dying. Cells regrown from these refractory bacteria 
remain as susceptible to the antibiotic as the original popula-
tion [9]. Although canalization, redundancy, and degeneracy 
probably contribute to this phenomenon, it is the changes in 
the physiological state of bacterial organisms along the cell 
cycle that are probably critical. In practical terms, the main 
trait of the phenotype is slow growth. Experiments have 
shown that when growing bacteria are exposed to bacteri-
cidal concentrations of antibiotics, the sensitivity of the bac-
teria to the antibiotic commonly decreases with time and 
substantial fractions of the bacteria survive, without develop-
ing any inheritable genetic change [10]. Interestingly, these 
tolerant subpopulations generated by exposure to one con-
centration of an antibiotic are also tolerant to higher concen-
trations of the same antibiotic and can be tolerant to other 
types of antibiotics. It is possible that in any bacterial popu-
lation, a certain spontaneous switch might occur between 
normal and persister cells, and it has been proposed that the 
frequency of such a switch might be responsive to environ-
mental changes [11]. Such switching is probably stochastic, 
and depends on the random induction of persister cells 
through the activation of the alarmone (p)ppGpp resulting in 
increasing function of mRNA endonucleases [12]. In fact, 
we could designate as “persistence” the result of such a 

Table 2.1 Levels of specificity in antibiotic resistance

• Target mutation or alternative target production

• Inducible enzyme protecting target

• Constitutive enzyme protecting target

• Inducible enzyme detoxifying the antibiotic

• Constitutive enzyme detoxifying the antibiotic

• Rewiring of physiological systems altered by antibiotic exposure

• Mutation in specific mechanism for antibiotic uptake

• Inducible efflux system

• Constitutive efflux system

• Alterations in general mechanisms of antibiotics uptake

• Nonspecific envelope permeability alterations

• Global stress adaptive responses

• Phenotypic tolerance related with cell cycle

• Environment-dependent resistance

2 Evolutionary Biology of Drug Resistance
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switch, and phenotypic tolerance or indifference to drugs as 
the physiological status of any cell to become refractory to 
drugs. However, in our opinion such distinctions are not 
always clear. Mathematical modelling and computer simula-
tions suggests that phenotypic tolerance or persistence might 
extend the need of antibiotic therapy, cause treatment failure 
of eradication, and promote the generation and ascent of 
inherited, specific resistance to antibiotics [13].

3.2  The Source of Antibiotic-Resistance 
Genes

Genes currently involved in antibiotic-resistance may have 
evolved for purposes other than antibiotic resistance (Table 2.2). 
From this point of view, resistance should be considered as a 
chance product, determined by the interaction of an antibiotic 
and a particular genotype. This is not incompatible with the 
idea of a gradual modification of some genes of pre-existing 
cellular machinery to finally “convert” into resistance genes. 
Some genes which may be neutral or almost neutral in the pre-
vailing non-antibiotic environment may possess a latent poten-
tial for selection that can only be expressed under the appropriate 
conditions of antibiotic selection. In this case we are probably 
facing a pre- adaptation [14, 15], in the sense of assumption of 
a new function without interference with the original function 
via a small number of mutations, or gene combinations. In a 
later paragraph we will see in details the possible origin of 
enzymes hydrolyzing beta-lactam antibiotics (beta-lactamases) 
as an alteration of the tridimensional structure of the active site 
of cell wall biosynthetic enzymes (transglycosylases- 
transpeptidases). In other cases, the mere amplification of 
genes with small activity for the purposes of resistance may 
also result in a resistant phenotype [16]. Finally, we can have an 
exaptation [17] if the genetic conditions which exist for a func-
tion are equally well adapted to serve for antibiotic resistance.

A reservoir of “unknown” resistance genes in the intesti-
nal microbiome has been suggested [18] even though a 
number of these genes have not been functionally con-
firmed (might have structural resemblance with resistance 
genes, but the resistance function was not proven). Cryptic 
beta- lactamase- mediated resistance to carbapenems is 
present in intestinal Bacteroides or in Listeria [19–21]. 
Metallo-beta-lactamases (MBLs) can be found in the 
genomes of 12 different Rhizobiales [18]. Fifty-seven open 
reading frames were classified as potential MBLs. Four of 
them were functionally analysed and one was demonstrated 
to be a functional MBL. Broad- spectrum chromosomally 
mediated beta-lactamases are usually found in Gram-
negative organisms. Quinolone-resistance qnr genes, now 
plasmid-mediated, were originated in the chromosome of 
aquatic bacteria, such as Shewanella algae [22, 23]. Cryptic 
tetracycline-resistance determinants are present in the chro-
mosomes of susceptible Bacillus, Bacteroides, or E. coli 

strains as well as aminoglycoside modifying enzymes in 
some Enterobacteriaceae species and P. aeruginosa . 
Resistance mediated by drug-efflux pumps constitutes an 
excellent example of exaptation. For instance, a blast search 
for proteins similar to the macrolide-resistance Mef protein 
of Streptococcus reveals hundreds of hits of similar 
sequences encompassing all microorganisms, including 
Neisseria, Bacteroides, Legionella, Enterococcus, 
Desulfitobacterium, Lactococcus, Lactobacillus, Ralstonia, 
Bacillus, Geobacter, Thermologa, or Streptomyces. More 
recently, the possibility that genetic variants of the 
aminoglycoside- inactivating enzyme aac(6′)-Ib gene might 
reduce the susceptibility to quinolones was reported [22]. A 
number of these enzymes are normal chromosomal genes in 
a number of species, such as members of Enterococci, 
where they can contribute to so-called natural resistance to 
aminoglycosides and quinolones. Clinical resistance to 
aminoglycosides is also due to target modification by 
A1408 16SrRNA methyltransferases, which have been 
found in environmental Actinobacteria and Firmicutes [24].

The evolution of vancomycin-resistance multigene deter-
minants is particularly intriguing. They are found in a limited 
number of complex operon-clusters. However these clusters 
are composed of genes from different sources, and almost 
certainly originated from a genus other than Enterococcus, 
such a Bacillus and Paenibacillus for vanA, Clostridium, 
Atopobium, or Eggerthella for vanB, that is, environmental 
aerobic or strict anaerobic bacteria from the bowel flora. The 
classic “eye evolution problem” applies here. It is difficult 
to conceive how such a complicated mechanism of defence 
against glycopeptidic antibiotics might have evolved, as 
apparently all its intrincate functions are required for the 
vancomycin-resistance phenotype. In the case of the many 
different elements that are needed to “construct” an eye, a 
principal component should emerge first (in the eye, the 
starting point is the existence of light-sensitive cells). Some 
small degree of glycopeptide resistance must have evolved 
first (probably mediated by d-Ala:d-lac ligases) and this 
must have been selected and eventually refined by further 
evolutionary steps, that certainly include the modular recruit-
ment of genes with functions primarily unrelated with antibi-
otic resistance, as two-component stimulus–response 
coupling (sensing-transcription) mechanisms. Without this 
inducible mechanism there is in fact a drastic reduction in 
the levels of resistance to beta-lactam antibiotics and vanco-
mycin [25]. It is likely that unsuccessful combinations have 
been produced along time, and probably a number of differ-
ent “solutions” have arisen. Indeed photoreceptors or eyes 
have also independently evolved more than 40 times in the 
animal kingdom. This example illustrates how nature evolves 
in many parallel ways, and the same occurs for drug resis-
tance. The high diversity in determinants of resistance 
strongly suggests that many of them have evolved to the cur-
rent function from “pre-resistance” molecules originated 
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from different evolutionary lineages. Indeed we know about 
dozens of aminoglycoside-modifying enzymes, thousands of 
beta-lactamases, many of them redundantly inactivating the 
same antibiotic substrates.

This panorama helps to visualize the almost unlimited 
number and variety of potential antibiotic-resistance 
determinants in the microbial world. Because most bacte-
rial pathogens enter periodically or are hosted in the envi-
ronment, research on antibiotic resistance should be 
placed in the field of environmental microbiology [26, 27]. 
Many of the ancestor or current genes involved in actual or 
potential mechanisms of resistance are located in environ-
mental bacteria. In a particular location, the ensemble of 
all these resistance genes constitutes the local resistome 
[28, 29]. The size of the environmental resistome can be 
determined by metagenomic technology dissecting local 
microbiomes, using gene-capture platforms particularly 
sensitive for the detection of resistance genes along with 
recent bioinformatic approaches for data mining and 
metagenomics.

Antibiotic-producing microorganisms might still be 
considered as a suitable source of highly efficient resistance 
determinants. It can be presumed that both antibiotic biosyn-
thetic pathways and the mechanisms of resistance avoiding 
self-damage may be the result of a co-evolutionary process. 
In fact, resistance can be viewed as a pre-condition for sig-
nificant antibiotic production. The benefit associated with 
antibiotic production (probably preventing habitat invasion 
by sensitive competitors) [30] probably also selected the pro-
ducer strains harbouring the more efficient resistance strate-
gies. As previously stated before, these resistance 
mechanisms may in their turn have originated in housekeep-
ing genes (for instance, sugar kinases or acetyl-transferases 
for aminoglycoside resistance) [31, 32] (Table 2.1).

At closer evolutionary times, it is undeniable that most of 
the current mechanisms of antibiotic resistance might be 
derived from commensal organisms of the normal microbi-
ota of human and animals, after older exchanges with envi-
ronmental organisms. Because of that, research on antibiotic 
resistance forms part of the “One Health” approach, encom-
passing humans, animals, and the environment [33].

3.2.1  Origin of Drug Resistance: The Case 
of Beta-Lactamases

The origin and function of beta-lactamases in nature are still a 
matter of debate. Current knowledge upholds that PBPs and 
beta-lactamases are related to each other from a structural and 
an evolutionary point of view and that these proteins might 
have common ancestors in primitive antibiotic producer bac-
teria [34]. Certainly, at their turn, both beta-lactamases and 
PBPs should derive from ancient carboxypeptidases. It has 
been traditionally postulated that antibiotic-producing bacte-
ria need to produce their own antidote to avoid committing 
suicide and that beta-lactam and beta-lactamase production in 
these organisms could be co-regulated. The filamentous soil 
bacteria such as Streptomyces, Nocardia, and Actinomadura 
produce, among others, beta-lactam antibiotics and beta-lac-
tamases and soil fungi such as Penicillium are also able to 
produce beta- lactam antibiotics. Some of the genes participat-
ing in the biosynthesis of beta-lactams, such as cef or pcb gene 
variants, share similar sequences in different species of antibi-
otic producers, including Cephalosporium, Streptomyces, and 
Penicillium. Amino acid sequence alignment and bioinfor-
matic analysis led to the proposal that all these genes have 
evolved from an ancestral gene cluster that was later mobi-
lized from ancient bacteria to pathogenic organisms. 
Horizontal gene transfer must have taken place in the soil 
about 370 million years ago and multiple gene transfer events 

Table 2.2 Examples of resistance mechanisms in clinical strains that evolved from natural functions in non-clinical organisms

Antibimicrobial group Mechanisms Related natural protein Natural reservoirs

Aminoglycosides Acetylation Histone-acetylases Streptomyces

Phosphorylation Protein kinases Actinobacteria, Firmicutes

16S rRNA methyltransferases The same

Tetracyclines Efflux (mar) Major facilitator superfamily EF-Tu, EF-G Streptomyces

Chloramphenicol Acetylation Acetylases Streptomyces

Efflux (mar) Major facilitator superfamily EF-Tu, EF-G

Macrolides Target site modification rRNA methylases Streptomyces

ß-lactams (methicillin) PBP2a Homologous PBP2a Staphylococcus sciuri

ß-lactams (cefotaxime) CTX-M-3 beta-lactamase Homologous beta-lactamases Kluyvera ascorbata

ß-lactams (carbapenems) OXA-48 like beta-lactamase Homologous beta-lactamases Shewanella xiamenensis

Glycopeptides (vancomycin) Target site modification: d-ala-d- 
ala replacement (Van operon)

Van operon homologous genes Paenibacillus, 
Streptomyces, 
Amycolatopsis

Fluoroquinolones Topoisomerase protection Qnr like protein Shewanella algae

Topoisomerase protection QnrS like protein Vibrio splendidus

Efflux QepA protein Streptomyces
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occurred from bacteria to bacteria or bacteria to fungi [35]. 
Beta-lactam gene clusters participating in antibiotic biosyn-
thesis also often include genes for beta-lactamases and PBPs. 
The beta-lactamase gene products have been shown to partici-
pate in part in the regulation of the production of these antibi-
otics such as cephamycins in Nocardia lactamdurans or 
cephalosporin C in Streptomyces clavuligerus. The latter also 
produces a potent inhibitor of class A beta-lactamase, proba-
bly to protect itself from formed antibiotics.

Beta-lactamases and PBPs also share issues other than 
potential common ancestors, gene sequences, or potential 
involvement in antibiotic biosynthesis regulation. Both of 
them have functions in relation to cell wall and peptidoglycan, 
which are more evident in the case of PBPs. These proteins 
are responsible for assembly, maintenance, and regulation of 
peptidoglycan structure. They are mainly anchored in the bac-
terial inner membrane, with their active site in the periplasmic 
space in Gram negatives and the corresponding space in Gram 
positives. In parallel, most of the beta-lactamases are secreted 
to the periplasmic space in the Gram negatives or evade the 
peptidoglycan barrier in the Gram-positive organisms. All 
PBP classes, with the exception of one which appears to be 
Zn2+ dependent, and beta- lactamase classes are serine active 
site proteins (see below). Peptidoglycan degrading products 
can regulate the production of beta-lactamases in certain 
Gram-negative bacteria due to the action of PBPs or beta-
lactam antibiotics. In contrast, natural chromosomal beta-lac-
tamases in these organisms have been shown to participate in 
the regulation of precursors of peptidoglycan.

Amino acid sequence analysis of PBPs and beta- 
lactamases argue in favour of a common origin of these pro-
teins. Both proteins are members of a single superfamily of 
active-serine enzymes that are distinct from the classical ser-
ine proteases. The amino acid alignments of the main PBPs 
and different beta-lactamases reveal the presence of con-
served boxes with strict identities or homologous amino 
acids. Moreover, site-directed mutagenesis in the residues 
essential for the catalytic activity of PBP in E. coli and the 
counterpart residues in class A beta-lactamases has shown 
similar features in these positions. In essence, the same 
structural motifs that bind penicillin in PBPs can be used to 
hydrolyze beta-lactams for beta-lactamases [36].

Structural evidence also supports the proposal that beta- 
lactamases descend from the PBP cell wall biosynthesis 
enzymes [37]. PBPs are ancient proteins as bacteria came into 
existence approximately 3.8 billion years ago, but the devel-
opment of beta-lactamases is a relatively recent event, which 
must have taken place after the evolution of the first biosyn-
thetic pathway in beta-lactam-producing organisms. It has 
been argued that this process has been reproduced several 
times to generate the different class A, C, and D beta- 
lactamases. Beta-lactamases have had to undergo structural 
alterations to become effective as antibiotic resistance 

enzymes, avoiding the interaction with the peptidoglycan or 
peptidoglycan precursors, which are the substrates for PBPs. 
This has been disclosed in X-ray interaction models with 
cephalosporin derivatives and AmpC beta-lactamase variants 
from E. coli. These models revealed not only three dimen-
sional structural similarities but also that the surface for inter-
action with the strand of peptidoglycan that acylates the active 
site, which is present in PBPs, is absent in the beta- lactamase 
active site. The possible mutational pathways of evolution 
from PBPs to beta-lactamases have been investigated [38], 
but certainly this process might have evolved separately, by 
mutation and/or recombination, on many occasions.

Alternative hypotheses of the origin and function of beta- 
lactamases have also been postulated. Antibiotics are known 
to be secondary metabolite compounds that are normally 
released in the early stationary growth phase. For this reason, 
it has been hypothesized that beta-lactamases may also play 
a role as “peptidases”, in catalysing the hydrolysis of the 
beta-lactam nucleus to reutilize carbon and nitrogen as an 
energy source in adverse conditions and they may act as 
nutrients for potential growing bacteria [39]. Some environ-
mental organisms, including some Burkholderia cepacia 
genomovars and Pseudomonas fluorescens, have been shown 
to grow in the presence of penicillin as a sole carbon and 
nitrogen source and to stimulate the synthesis of beta- 
lactamase under this condition. From an evolutionary point 
of view, the beta-lactamase-producing bacteria have had 
advantages over non-beta-lactamase-producing organisms, 
particularly in soil communities. The former have been able 
not only to avoid the action of natural beta-lactam products 
secreted by these antibiotic producers but also to simultane-
ously use beta-lactams as nutrients.

3.3  Global Stress Regulation and Antibiotic 
Resistance

In most cases, antibiotic resistance requires time to be 
expressed in a particular bacterial cell. The best example is 
when this expression occurs as a consequence of antibiotic 
exposure (antibiotic-mediated induction). Only bacteria 
able to survive during the time required for full induction of 
resistance mechanisms will be able to resist antibiotic effects 
and consequently be selected. This “need-to-resist-to-
become-  resistant” paradox deserves some explanation. 
Antibiotic action, even at sub-inhibitory conditions, results 
in alterations of the bacterial physiological network. 
Physiological networking and signalling mechanisms 
increase (amplify) any cell disturbance, just as a cob-web 
increases small oscillations, and immediately provoke non-
specific mechanisms of global adaptation. Phenotypic toler-
ance or formation of “persister cells” might be among this 
type of responses (see above), with mechanisms involving 
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the alarmone (p)ppGpp being involved in cell survival, and 
consequently in antibiotic resistance [40]. Other mecha-
nisms might involve sigma factors, key-components of the 
translation cell machinery that are responsive to different 
types of stress [41, 42]. Sigma-S defective strains are more 
susceptible to antimicrobial agents [43]. Sigma-regulons are 
induced by beta-lactam agents, fosfomycin, teicoplanin, 
rifampicin, or polymyxins [44–46]. Probably heat-shock 
proteins also contribute to nonspecific antibiotic defence 
[47]. Of course that means that the excitement of global 
stress responses by factors other than antibiotics might non-
specifically reduce the antibiotic potency. SOS adaptive 
response might also be unspecifically triggered by antibiot-
ics. For instance, beta-lactam-mediated PBP-3 inhibition 
results in the induction of the SOS machinery in E. coli 
through the DpiBA two-component signal transduction sys-
tem [48, 49]. Among the immediate consequences of such 
an early antibiotic sublethal effect is that bacteria might 
reduce their growth rate, eventually entering in some degree 
of phenotypic tolerance to drugs, and also that some other 
adaptive responses are triggered [49].

3.4  Genetic Variation: Mutation

3.4.1  Mutation Frequency and Mutation Rate
In the case of antibiotic resistance, the mutation “rate” is fre-
quently and inappropriately defined as the in vitro frequency 
at which detectable mutants arise in a bacterial population in 
the presence of a given antibiotic concentration. Such a 
determination is widely considered an important task for the 
prognosis of the emergence of antibiotic-resistant bacteria. 
In the scientific jargon regarding antibiotics, a “mutation 
rate” is frequently presented in a characteristically naive way 
that can sometimes be understood as an intrinsic property of 
a new antimicrobial drug in its interaction with the target 
bacteria, with a “low mutation rate” that is considered an 
advantage over competitors. “This drug induces (?) a low 
mutation rate” is a familiar but completely mistaken expres-
sion. Note that in these types of tests we are recording the 
number of mutant cells and not the number of mutation 
events. In fact, we are recording only the selectively favour-
able mutations for the bacteria that lead to a visible antibiotic 
resistance phenotype, and therefore we are determining 
“mutation frequencies” and not “mutation rates”. From the 
pioneering works of Luria and Delbrück, it became clear that 
evaluation of mutation rates is not easy. The methods for dis-
tinguishing the value of the observed frequency of mutants 
from the real mutation rate are not easy to apply, and fluctua-
tion tests for analysis of the presence of populations of pre- 
existing mutants in the tested populations should be applied 
here. In the case of antibiotic resistance, the problem is com-
plicated by the fact that the phenotype does not always reflect 

the same genotypes in all selected mutants, as mutations in 
different genes can produce similar antibiotic resistance phe-
notypes. For example, when a quinolone resistance mutation 
rate is determined, this rate is really the result of the combi-
nation of the mutation rates of the genes that encode the syn-
thesis of GyrA, GyrB, ParA, ParC, and several different 
multidrug resistance (MDR) systems, and eventually other 
inactivating and target-protection mechanisms. In this 
respect, the calculated “phenotypic” mutation frequency is 
the result of several different “genotypic” mutation events.

The most important part of the adaptive possibilities of 
bacterial populations to environmental challenges, including 
adaptation to the anthropogenic antibiotic exposure, results 
from the huge quantity of bacterial individual cells. Simple 
calculations can provide an intuitive image of the mutation 
frequency in bacterial populations. E. coli genome has typi-
cally a size of 5,000,000 base pairs (5 × 106 bp), correspond-
ing approximately to 5000 genes. The mutation rate of E. 
coli is 1 × 10−3 per genome (cell) per generation [50]. Divided 
by the number of genes, 0.001/5000 = 0.0000002 = 2 × 10−7 p
er gene and (cell) generation. Considering a cell density of 
109 cells/ml in the colon, and a volume of 1000 ml in this part 
of the colonized intestine, we have 1012 E. coli cells in a 
 single host (for instance, a particular patient) meaning that 
each day, supposing that E. coli divides only once/day in the 
colon, we have 200,000 mutations per gene/day for the entire 
E. coli population established in a single host. Of course 
resistance genes, or pre-resistance genes, will also evolve at 
this rate. Many E. coli clones are living in our intestine for 
years [51], so that the number of generations might be huge, 
and so the cumulative number of possible mutations offered 
to natural selection. How might bacteria tolerate such muta-
tional load? Certainly due to purifying or stabilizing selec-
tion, that is, the alleles produced by most mutations are 
selectively removed if deleterious.

3.4.2  Hyper-mutation
The above calculations were based on huge bacterial popula-
tions in a shared environment (as E. coli in a “common” 
intestinal space in our example). However, many bacterial 
populations can be disaggregated, occupying small and 
eventually non-connected niches, with lower bacterial local 
densities in these compartments. Under immune response or 
antibiotic therapy, bacterial populations can also be reduced 
in size, and that applies in nature to all kinds of stressful 
conditions and bottlenecks. In environments where bacteria 
reach high population sizes, the normal mutation rates are 
more than enough to provide a sufficient wealth of muta-
tional variation. However, when confined to low population 
sizes in compartmentalized habitats, variants with increased 
mutation rates (mutators) tend to be selected since they have 
an increased probability of forming beneficial mutations. 
Hyper-mutation is frequently due to the impairment of the 
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mismatch repair system, and more particularly involves 
alterations in mutS gene, but also in mutL, or mutH. Note that 
in an asexually reproducing organism, a mutator allele (for 
instance, the mutS allele that hyper-generates mutation) and 
the beneficial mutations are physically and genetically asso-
ciated in the same chromosome. As a result the mutator 
allele will hitch-hike to increased frequency in the popula-
tion together with the beneficial mutation.

One exemplary case is the selection of hyper-mutator 
populations in highly compartmentalized, chronic infections 
under frequent antibiotic exposure. This is the case of bron-
chopulmonar colonization in cystic fibrosis patients or those 
with bronchiectasis [52]. Determination of spontaneous 
mutation rates in P. aeruginosa isolates from cystic fibrosis 
patients revealed that 36 % of the patients were colonized by 
a hypermutable (mutator, mostly mutS deficient) strain 
(exceeding by 10–1000× the normal mutation frequency, 
10−8) that persisted for years in most patients. Mutator strains 
were not found in a control group of non-cystic fibrosis 
patients acutely infected with P. aeruginosa. This investiga-
tion also revealed a link between high mutation rates in vivo 
and high rates of antibiotic resistance [53]. An analogous 
rise in the proportion of hyper-mutable strains in cystic fibro-
sis patients has been documented for other organisms, 
including Streptococcus, Haemophilus, Staphylococcus, or 
Stenotrophomonas, and for analogous clinical conditions, as 
chronic obstructive pulmonary disease [54–56].

About 1 % of the E. coli strains have at least 100× the 
modal mutation frequency of 10−8 (strong mutators) and a 
very high proportion of strains, between 11 and 38 % in the 
different series, had frequencies exceeding by 4–40 times 
this modal value (weak mutators) [57] (Fig. 2.1). These pro-
portions are obviously far higher than could be expected by 
random mutation of the genes that stringently maintain the 
normal mutation frequency. Moreover, increased mutation 
frequency may result in a loss of fitness for the bacterial pop-
ulation in the gut [58] as random deleterious mutations are 

much more frequent than the advantageous ones. Therefore 
the abundance of strains with increased frequency of muta-
tion ought to be maintained by positive selection for the 
hyper-mutable organisms [59]. Without positive selection, 
the hypothesis is that these mutator populations would be 
extinct because of their unbearable mutational load (burden). 
However, we have shown in long-term evolution experi-
ments that hyper-mutators might find mechanisms to reduce 
their rates of mutation, even if they cannot reacquire the 
repair function (for instance, the wild-type MutS gene) by 
horizontal gene transfer. These mechanisms involve protect-
ing the cell against increased endogenous oxidative radicals 
involved in DNA damage, and thus in genome mutation [60].

The problem of combining the generation of variation 
required for adaptive needs and the required integrity of the 
bacterial functions might also be solved by strategies of low- 
level mutation, and “transient hyper-mutation”. Possibly the 
fitness cost in terms of deleterious mutations is lower in a 
weak mutator and this allows their rising to higher frequen-
cies in the population, and there might be a “reserve of low 
level mutators” in many bacterial populations, coexisting with 
the normo-mutable population. Indeed mutators are fixed in 
competition with non-mutators when they reach a frequency 
equal or higher than the product of their population size and 
mutation rate [61]. In populations of sufficient size, advanta-
geous mutations tend to appear in weak mutators, and the 
selective process will therefore enrich low mutating organ-
isms. The adaptive success of weak mutators may indeed pre-
vent further fixation of strong mutators [61]. The “transient 
hypermutation” strategy will be treated in a paragraph below.

Striking differences have been found in the frequency of 
hyper-mutable E. coli strains depending on the origin; faecal 
samples of healthy volunteers, urinary tract infections, or 
bloodstream infections. E. coli strains from blood cultures 
are typically isolated from hospitalized patients and are 
therefore expected to have had a longer exposure to different 
hosts and antibiotic challenges. For instance, the frequency 
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of hyper-mutable E. coli strains is higher among E. coli 
strains producing extended-spectrum beta-lactamases [62]. 
In general, adaptation to complex environments, including 
pathogenic ones, and the facilitation of between-hosts 
spread, leads to a certain microevolutionary “clonalization” 
(predominance of a particular clonal variant in a particular 
environment), which is facilitated by hypermutation [63]. In 
summary, mutation rates show a certain degree of polymor-
phism, and differences between isolates might reflect the 
degree of unexpected variation of the environment in which 
they are located [53, 64–67].

3.4.3  Antibiotics Inducing Mutations: Transient 
Mutation

A number of antibiotics induce adaptive responses to their 
own action, frequently—but not exclusively—by induction of 
the SOS repair system. SOS induction might be mediated by 
the SOS repair systems, not only those acting on DNA, but 
also on cell wall, as previously stated. One of the non- SOS 
effects (LexA/RecA independent)related to the PBP3- 
inhibition cell-wall damage response is the induction of dinB 
transcription, resulting in the synthesis of an error-prone DNA 
polymerase IV [68]. The consequence of this is an increase in 
the number of transcriptional mistakes, which might result in 
the emergence of adaptive mutations producing resistance to 
the challenging agents [67, 69]. Antibiotics that produce mis-
translation, as aminoglycosides, induce translational stress-
induced mutagenesis (non-inheritable!) [70]. Many antibiotics 
induce the SOS repair system, resulting in mutational 
increases, not only DNA-damaging agents, such as fluoroqui-
nolones [71], but also beta-lactam agents [72]. The reason for 
mutational increase is the SOS-mediated induction of alterna-
tive error-prone DNA polymerases PolII, PolIV, and PolV.

3.5  Genetic Variation: Gene Recombination, 
Gene Amplification

Gene recombination might act as a restorative process which 
opposes gene mutation. Indeed a mutated gene, leading to a 
deleterious phenotype, might be replaced by homologous 
recombination with the wild gene if it is accessible in the 
same chromosome, or in other replicons of the same or dif-
ferent organism. For instance, if a mutated gene leading to 
antibiotic resistance is associated with a high biological cost 
in the absence of antibiotics, reducing fitness of the resistant 
organism, the mutated gene could be replaced by the wild- 
type gene, restoring both fitness and antibiotic susceptibility. 
This phenomenon might explain the partial penetration of 
some resistance traits in bacterial populations.

On the contrary, gene recombination might assure spread 
of mutations associated with antibiotic-resistance pheno-
types. This might occur inside the same bacterial cell 

(intragenomic recombination) or between cells; in the last 
case, horizontal genetic transfer is required. Intragenomic 
recombination facilitates spread of homologous repeated 
genetic sequences. Gene conversion assures non-reciprocal 
transfer of information between homologous sequences 
inside the same genome. This might lead to minimizing the 
costs associated with the acquisition of a particular mutation 
(replacing the mutated sequence), or, on the contrary, to 
maximizing the benefits of mutations that confer a weak 
advantage when present as a single member (spreading cop-
ies of the mutated sequence) [73]. For instance, single- 
mutated rRNAs easily produce antibiotic resistance to 
aminoglycosides (and probably this is the case for other anti-
biotics) when the rest of the copies of rRNA sequences 
remain unchanged: the advantageous mutation spread by 
gene conversion [74].

Recombination in fact provides an extremely frequent 
mechanism for bacterial adaptation, being reversible in many 
cases. Gene duplication-amplification processes (either 
RecA-dependent or RecA-independent) are highly relevant 
in the adaptation to antibiotic exposure because they gener-
ate extensive and reversible genetic variation on which adap-
tive evolution can act [75–77].

For instance, sulfonamide, trimethoprim, or beta-lactams 
resistance (including resistance to beta-lactam plus beta- 
lactamase inhibitors) occur by increased gene dosage through 
amplification of antibiotic hydrolytic enzymes, target 
enzymes, or efflux pumps [78]. These cells now are now 
selectable by low antibiotic concentrations, increase in num-
ber and therefore also increase the probability for new adap-
tive mutations occurring in one of the amplified genes, 
eventually leading to higher levels of resistance. Once that 
occurs, low-level resistance by amplification-only is no lon-
ger efficiently selected. Moreover, gene amplification is 
inherently instable, and also might produce fitness costs, as 
each additional kilobase pairs of DNA reduces fitness by 
approximately 0.15 % [79] so that the amplification will 
return to the original single gene-status. No signal will 
remain of this transient event in the genome sequence, and 
that is the reason why this evolutionary mechanism remains 
underdetected.

The possibility of gene recombination between bacterial 
organisms is highly dependent on the availability of horizon-
tal gene-transfer mechanisms and the acceptance by the 
recipient cell of the foreign DNA. For instance, DNA uptake 
in Neisseria meningitidis or Haemophilus influenzae is 
highly sequence-specific. Transformation with Streptococcus 
pneumoniae DNA is exceptional outside this genus. In these 
very human-adapted organisms, intrageneric transfer facili-
tates the required variability in the surface proteins needed 
for colonization of mucosal surfaces in the human host, but 
the same strategy has been applied for optimizing mecha-
nisms of antibiotic resistance. A variety of mosaic (hybrid) 
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